Elasticsearch API

boolean model

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
GET /product/_search
{
"query": {
"match": {
"name": {
"query": "my good",
"operator": "or", //可选:or、and 默认是or
"minimum_should_match": 2, //最少匹配2个此项
"boost":1 //相关度算法权重
}
}
}
}

//所有相关查询,ES底层会转换成bool操作
GET /product/_search
{
"query": {
"bool": {
"should": [ //and的话,这里就是must, 可选:must/must not/should
{"term":{"name":"my"}},
{"term":{"name":"good"}}
],
"boost": 1,
"minimum_should_match": 2
}
}
}

JAVA API

Transport Client:TransportClient不推荐使用,而推荐使用Java High Level REST Client,并将在Elasticsearch 8.0中删除。
Java Low Level REST Client:低级别的REST客户端,通过http与集群交互,用户需自己编组请求JSON串,及解析响应JSON串。兼容所有ES版本
Java High Level REST Client:高级别的REST客户端,基于低级别的REST客户端,增加了编组请求JSON串、解析响应JSON串等相关api。使用的版本需要保持和ES服务端的版本一致,否则会有版本问题。

1
2
3
4
5
6
7
8
9
10
11
<dependency>
<groupId>org.elasticsearch.client</groupId>
<artifactId>transport</artifactId>
<version>7.10.1</version>
</dependency>

<dependency>
<groupId>org.elasticsearch.client</groupId>
<artifactId>elasticsearch-rest-high-level-client</artifactId>
<version>7.10.1</version>
</dependency>

Transport Client

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public static void main(String[] args) {
//配置集群名称
Settings settings = Settings.builder().put("cluster.name", "elasticsearch").build();
//创建连接
//TransportClient client = new PreBuiltTransportClient(Settings.EMPTY)
TransportClient client = new PreBuiltTransportClient(settings)
.addTransportAddress(new TransportAddress(InetAddress.getByName("localhost"), 9300))//通讯端口 而不是服务端口
.addTransportAddress(new TransportAddress(InetAddress.getByName("localhost"), 9301));

//添加数据
create(client);
//关闭连接
client.close();
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
private void create(TransportClient client) {
//查询数据
List<Product> list = service.list();
for (Product item : list) {
//固定语法
IndexResponse response = client.prepareIndex("product2", "_doc", item.getId().toString())
.setSource(XContentFactory.jsonBuilder()
.startObject()
.field("name", item.getName())
.field("desc", item.getDesc())
.field("price", item.getPrice())
.field("date", item.getCreateTime().toLocalDateTime().format(DateTimeFormatter.ofPattern("yyyy-MM-dd")))
.field("tags", item.getTags().split(","))
.endObject())
.get();
System.out.println(response.getResult());
}
}
1
2
3
4
5
6
7
8
9
10
11
//查询一条数据
private void get(TransportClient client) {
GetResponse response = client.prepareGet("product", "_doc", "1").get();
String index = response.getIndex();//获取索引名称
String type = response.getType();//获取索引类型
String id = response.getId();//获取索引id
System.out.println("index:" + index);
System.out.println("type:" + type);
System.out.println("id:" + id);
System.out.println(response.getSourceAsString());
}
1
2
3
4
5
6
7
8
9
10
11
//批量查询
private void getAll(TransportClient client) {
SearchResponse response = client.prepareSearch("product")
.get();
SearchHits searchHits = response.getHits();
SearchHit[] hits = searchHits.getHits();
for (SearchHit hit : hits) {
String res = hit.getSourceAsString();
System.out.println("res" + res);
}
}
1
2
3
4
5
6
7
8
9
10
//增量更新
private void update(TransportClient client) {
UpdateResponse response = client.prepareUpdate("product", "_doc", "2")
.setDoc(XContentFactory.jsonBuilder()
.startObject()
.field("name", "update name")
.endObject())
.get();
System.out.println(response.getResult());
}
1
2
3
4
5
//删除数据
private void delete(TransportClient client) {
DeleteResponse response = client.prepareDelete("product", "_doc", "2").get();
System.out.println(response.getResult());
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
//多条件查询
public void multiSearch(TransportClient client) {
//SearchResponse:返回的结果集
SearchResponse response = client.prepareSearch("product2")
.setQuery(QueryBuilders.termQuery("name", "xiaomi")) // Query
.setPostFilter(QueryBuilders.rangeQuery("price").from(0).to(4000))
.setFrom(1).setSize(3)
.get();
SearchHits searchHits = response.getHits();
SearchHit[] hits = searchHits.getHits();
for (SearchHit hit : hits) {
String res = hit.getSourceAsString();
System.out.println("res" + res);
}
client.close();
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
//统计每个月份的tags中每个词项term的平均价格
GET /product/_search
{
"aggs": {
"group_by_month": {
"date_histogram": {
"field": "date",
"calendar_interval": "month"
},
"aggs": {
"by_tags": {
"terms": {
"field": "tags.keyword"
},
"aggs": {
"avg_price": {
"avg": {
"field": "price"
}
}
}
}
}
}
},
"size": 0
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
//查询结果
{
"aggregations" : {
"group_by_month" : {
"buckets" : [
{
"key_as_string" : "2020-04-01T00:00:00.000Z",
"key" : 1585699200000,
"doc_count" : 3,
"by_tags" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "bufangshui",
"doc_count" : 1,
"avg_price" : {
"value" : 999.0
}
},
{
"key" : "fashao",
"doc_count" : 1,
"avg_price" : {
"value" : 2999.0
}
}
]
}
},
{
"key_as_string" : "2020-05-01T00:00:00.000Z",
"key" : 1588291200000,
"doc_count" : 2,
"by_tags" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "fashao",
"doc_count" : 2,
"avg_price" : {
"value" : 4499.0
}
},
{
"key" : "xingjiabi",
"doc_count" : 2,
"avg_price" : {
"value" : 4499.0
}
}
]
}
}
]
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
//通过Java代码实现上面案例的聚合查询
public void aggSearch(TransportClient client) {
//region 1->计算并返回聚合分析response对象
SearchResponse response = client.prepareSearch("product")
.addAggregation(
AggregationBuilders.dateHistogram("group_by_month")
.field("date")
.calendarInterval(DateHistogramInterval.MONTH)
//.dateHistogramInterval(DateHistogramInterval.MONTH)
.subAggregation(
AggregationBuilders
.terms("by_tag")
.field("tags.keyword")
.subAggregation(
AggregationBuilders
.avg("avg_price")
.field("price")
)
)
)
.execute().actionGet(); //执行查询

//region 2->输出结果信息
SearchHit[] hits = response.getHits().getHits();
//获取aggregations结果
Map<String, Aggregation> map = response.getAggregations().asMap();
//获取group_by_month结果
Aggregation group_by_month = map.get("group_by_month");
Histogram dates = (Histogram) group_by_month;
//转换成分组的桶
Iterator<Histogram.Bucket> buckets = (Iterator<Histogram.Bucket>) dates.getBuckets().iterator();

while (buckets.hasNext()) {
//遍历桶中的数据
Histogram.Bucket dateBucket = buckets.next();
System.out.println("\n\n月份:" + dateBucket.getKeyAsString() + "\n计数:" + dateBucket.getDocCount());
//获取桶里面的桶by_tag
Aggregation group_by_tag = dateBucket.getAggregations().asMap().get("by_tag");
StringTerms terms = (StringTerms) group_by_tag;
Iterator<StringTerms.Bucket> tagsBucket = terms.getBuckets().iterator();

while (tagsBucket.hasNext()) {

//遍历by_tag桶,获取桶中的平均价格
StringTerms.Bucket tagBucket = tagsBucket.next();
System.out.println("\t标签名称:" + tagBucket.getKey() + "\n\t数量:" + tagBucket.getDocCount());
Aggregation avg_price = tagBucket.getAggregations().get("avg_price");
Avg avg = (Avg) avg_price;
System.out.println("\t平均价格:" + avg.getValue() + "\n");
}
}
//endregion

client.close();
}

High Level REST Client

1
2
3
4
常见步骤:
1.创建对应的Request对象
2.创建对应的Builder对象/编写对应操作
3.Client执行对应的方法

创建连接

1
2
3
4
5
6
7
//使用 RestHighLevelClient
public void createConnection {
RestHighLevelClient client = new RestHighLevelClient(
RestClient.builder(
new HttpHost("localhost", 9200, "http"),
new HttpHost("localhost", 9201, "http"))); //使用的是9200服务端口
}

创建索引

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
public void createIndex(RestHighLevelClient client) {
CreateIndexRequest request = new CreateIndexRequest("test_index");

request.settings(Settings.builder()
.put("index.number_of_shards", 3)
.put("index.number_of_replicas", 2)
);
CreateIndexResponse createIndexResponse = client.indices().create(request, RequestOptions.DEFAULT);
if (createIndexResponse.isAcknowledged()) {
System.out.println("创建index成功!");
} else {
System.out.println("创建index失败!");
}

client.close();
}

查询索引

1
2
3
4
5
6
7
8
9
public void getIndex(RestHighLevelClient client) {
GetIndexRequest request = new GetIndexRequest("test_index*");
GetIndexResponse response = client.indices().get(request, RequestOptions.DEFAULT);
String[] indices = response.getIndices();
for (String indexName : indices) {
System.out.println("index name:" + indexName);
}
client.close();
}

删除索引

1
2
3
4
5
6
7
8
9
10
public void delIndex(RestHighLevelClient client) {
DeleteIndexRequest request = new DeleteIndexRequest("test_index");
AcknowledgedResponse response = client.indices().delete(request, RequestOptions.DEFAULT);
if (response.isAcknowledged()) {
System.out.println("删除index成功!");
} else {
System.out.println("删除index失败!");
}
client.close();
}

插入数据

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public void insertData(RestHighLevelClient client) {
List<Product> list = service.list();

//插入数据,index不存在则自动根据匹配到的template创建。index没必要每天创建一个,如果是为了灵活管理,最低建议每月一个 yyyyMM。
IndexRequest request = new IndexRequest("test_index");
//最好不要自定义id 会影响插入速度。
Product product = list.get(0);
Gson gson = new Gson();
request.id(product.getId().toString());
request.source(gson.toJson(product), XContentType.JSON);
IndexResponse response = client.index(request, RequestOptions.DEFAULT);
System.out.println(response);
client.close();
}

批量插入

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public void batchInsertData(RestHighLevelClient client) {
//批量插入数据,更新和删除同理
BulkRequest request = new BulkRequest("test_index");
Gson gson = new Gson();
Product product = new Product();
product.setPrice(3999.00);
product.setDesc("xioami");
for (int i = 0; i < 10; i++) {
product.setName("name" + i);
request.add(new IndexRequest().source(gson.toJson(product), XContentType.JSON));
}
BulkResponse response = client.bulk(request, RequestOptions.DEFAULT);
System.out.println("数量:" + response.getItems().length);
client.close();
}

查询数据

1
2
3
4
5
6
7
8
9
10
11
12
13
//通过ID查询数据
public void getById(RestHighLevelClient client) {
//注意 这里查询使用的是别名。
GetRequest request = new GetRequest("test_index", "PPWhwnIBRwX67j4bTmV1");
String[] includes = {"name", "price"};
String[] excludes = {"desc"};
FetchSourceContext fetchSourceContext = new FetchSourceContext(true, includes, excludes);
//只查询特定字段。如果需要查询所有字段则不设置该项。
request.fetchSourceContext(fetchSourceContext);
GetResponse response = client.get(request, RequestOptions.DEFAULT);
System.out.println(response);
client.close();
}

删除数据

1
2
3
4
5
6
7
//通过ID删除数据
public void delById(RestHighLevelClient client) throws IOException {
DeleteRequest request = new DeleteRequest("test_index", "1");
DeleteResponse response = client.delete(request, RequestOptions.DEFAULT);
System.out.println(response);
client.close();
}

批量查询

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public void multiGetById(RestHighLevelClient client) throws IOException {
//多个根据id查询
MultiGetRequest request = new MultiGetRequest();
request.add("test_index", "PPWhwnIBRwX67j4bTmV1");
//两种写法
request.add(new MultiGetRequest.Item(
"test_index",
"PfWhwnIBRwX67j4bTmV1"));
MultiGetResponse response = client.mget(request, RequestOptions.DEFAULT);
for (MultiGetItemResponse itemResponse : response) {
System.out.println(itemResponse.getResponse().getSourceAsString());
}
client.close();
}

查询更新

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
//更新查询
public void updateByQuery(RestHighLevelClient client) throws IOException {
UpdateByQueryRequest request = new UpdateByQueryRequest("test_index");
//默认情况下,版本冲突会中止 UpdateByQueryRequest 进程,但是你可以用以下命令来代替
//设置版本冲突继续
// request.setConflicts("proceed");
//设置更新条件
request.setQuery(QueryBuilders.matchQuery("name","name1 name3"));
// //限制更新条数
// request.setMaxDocs(10);
request.setScript(
new Script(ScriptType.INLINE, "painless", "ctx._source.desc+='#';", Collections.emptyMap()));
BulkByScrollResponse response = client.updateByQuery(request,RequestOptions.DEFAULT);
System.out.println(response);
client.close();
}

分页查询

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public ResultDto carInfo(String keyword,Integer from,Integer size) {
SearchRequest searchRequest = new SearchRequest("product");

SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder.query(QueryBuilders.matchQuery("name", keyword));
searchSourceBuilder.from(from);
searchSourceBuilder.size(size);
searchRequest.source(searchSourceBuilder);
SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
//ESClient.getInstance().closeClient();

ResultDto res = new ResultDto();
res.setData(searchResponse.getHits().getHits());
return res;
}

Scroll查询

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
public ResultDto scroll(String scrollId) {
SearchRequest searchRequest = new SearchRequest("product");
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder.size(2); //每页两条
searchRequest.source(searchSourceBuilder);

searchRequest.scroll(TimeValue.timeValueMinutes(1L)); //scrollID的有效期1分钟

SearchResponse searchResponse = scrollId == null
? client.search(searchRequest, RequestOptions.DEFAULT)
: client.scroll(new SearchScrollRequest(scrollId), RequestOptions.DEFAULT);
scrollId = searchResponse.getScrollId();
SearchHits hits = searchResponse.getHits();

ResultDto res = new ResultDto();
res.setTag(scrollId);
res.setData(hits.getHits());
return res;
}

批量操作

1
2
3
4
5
6
7
8
9
10
11
public ResultDto bulk() {
SearchRequest searchRequest = new SearchRequest("msb_auto");
BulkRequest request = new BulkRequest();
request.add(new DeleteRequest("product", "13")); //删除doc
request.add(new UpdateRequest("product", "22")
.doc(XContentType.JSON, "name", "天籁之音")); //修改doc一个字段
request.add(new IndexRequest("product").id("4")
.source(XContentType.JSON, "myname", "天津一汽")); //修改整doc
BulkResponse bulkResponse = client.bulk(request, RequestOptions.DEFAULT);
return null;
}

搜索模板

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
public ResultDto templateSearch() {

//region 创建模板并缓存 作用域为整个集群
Request scriptRequest = new Request("POST", "_scripts/test_template_search");
scriptRequest.setJsonEntity(
"{" +
" \"script\": {" +
" \"lang\": \"mustache\"," +
" \"source\": {" +
" \"query\": { \"match\" : { \"{{field}}\" : \"{{value}}\" } }," +
" \"size\" : \"{{size}}\"" +
" }" +
" }" +
"}");
Response scriptResponse = client.getLowLevelClient().performRequest(scriptRequest);


SearchTemplateRequest request = new SearchTemplateRequest();
request.setRequest(new SearchRequest("msb_auto"));
//STORED 保存到内存模板
request.setScriptType(ScriptType.STORED);
request.setScript("test_template_search");
// 本地模板

//request.setScriptType(ScriptType.INLINE);
// request.setScript(
// "{\n" +
// " \"from\": {{from}},\n" +
// " \"size\": {{size}},\n" +
// " \"query\": {\n" +
// " \"match\": {\n" +
// " \"master_brand_name\": \"{{master_brand_name}}\"\n" +
// " }\n" +
// " }\n" +
// "}");

Map<String, Object> scriptParams = new HashMap<>();
scriptParams.put("field", "master_brand_name");
scriptParams.put("value", "一汽");
scriptParams.put("size", 5);
request.setScriptParams(scriptParams);

//查询
SearchTemplateResponse response = client.searchTemplate(request, RequestOptions.DEFAULT);
return null;
}

模糊查询

1
2
3
4
5
6
7
8
public SearchHit[] fuzzy(String name) {
SearchRequest searchRequest = new SearchRequest("product");
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder.query(QueryBuilders.fuzzyQuery("brand_name.keyword", name).fuzziness(Fuzziness.AUTO));
searchRequest.source(searchSourceBuilder);
SearchResponse response = client.search(searchRequest, RequestOptions.DEFAULT);
return response.getHits().getHits();
}

多语句查询

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
public ResultDto multiSearch() {
//1.创建一个空的MultiSearchRequest
MultiSearchRequest request = new MultiSearchRequest();

//2.创建SearchRequest,并填充查询条件
SearchRequest firstSearchRequest = new SearchRequest("product");
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder.query(QueryBuilders.matchQuery("series_name", "朗动"));
firstSearchRequest.source(searchSourceBuilder);
//3.将SearchRequest装配到MultiSearchRequest中
request.add(firstSearchRequest);

//4.创建第二个SearchRequest并重复第三步
SearchRequest secondSearchRequest = new SearchRequest("product");
searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder.query(QueryBuilders.matchQuery("series_name", "揽胜运动"));
secondSearchRequest.source(searchSourceBuilder);
request.add(secondSearchRequest);

MultiSearchResponse response = client.msearch(request, RequestOptions.DEFAULT);
return null;
}

Bool查询

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
public ResultDto boolSearch() {
MultiSearchRequest request = new MultiSearchRequest();

SearchRequest searchRequest = new SearchRequest("product");
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder.query
(
QueryBuilders.boolQuery()
.must(matchPhraseQuery("sale_name", "2018款"))
.filter(matchQuery("master_brand_name", "大众").analyzer("ik_max_word"))
.mustNot(matchQuery("series_name", "速腾"))
);
searchRequest.source(searchSourceBuilder);
request.add(searchRequest);
MultiSearchResponse response = client.msearch(request, RequestOptions.DEFAULT);
return null;
}

Sniffer 嗅探器

概念:从运行中的Elasticsearch集群自动发现节点并将它们设置为现有RestClient实例(low实例)。

版本:从ES 2.X开始及更高版本支持。

1
2
3
4
5
6
7
8
9
10
<dependency>
<groupId>org.elasticsearch.client</groupId>
<artifactId>elasticsearch-rest-client-sniffer</artifactId>
<version>7.10.1</version>
</dependency>
<dependency>
<groupId>org.elasticsearch.client</groupId>
<artifactId>elasticsearch-rest-client</artifactId>
<version>7.10.1</version>
</dependency>
1
2
3
4
5
6
7
8
9
10
用法:
1.创建RestClient:RestClientBuilder
2.HTTPS支持:NodesSniffer
3.绑定:Sniffer.builder(RestClient)
4.监听:SniffOnFailureListener

相关设置参数:
1.setSniffIntervalMillis:每隔多久触发一次嗅探,单位毫秒,默认30000(5分钟)。
2.setSniffAfterFailureDelayMillis:嗅探失败时触发嗅探一次,经过设置的时间(默认1min)之后再次嗅探直至正常。若无绑定监听器则无效。
3.setFailureListener:设置用于监听嗅探失败的监听器,当监听到普通嗅探失败,则通知Sniffer实例进行新一轮的嗅探,并更新节点。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
public class ESClient {

private static ESClient ESClient;
private String host = "localhost:9200,localhost:9201";
private RestClientBuilder builder;
private static Sniffer sniffer;
private static RestHighLevelClient highClient;

private ESClient(){
}

public static ESClient getInstance() {
if (ESClient == null) {
synchronized (ESClient.class) {
if (ESClient == null) {
ESClient = new ESClient();
ESClient.initBuilder();
}
}
}
return ESClient;
}

public RestClientBuilder initBuilder() {
String[] hosts = host.split(",");
HttpHost[] httpHosts = new HttpHost[hosts.length];
for (int i = 0; i < hosts.length; i++) {
String[] host = hosts[i].split(":");
httpHosts[i] = new HttpHost(host[0], Integer.parseInt(host[1]), "http");
}

builder = RestClient.builder(httpHosts);

//region 在Builder中设置请求头
// 1.设置请求头
Header[] defaultHeaders = new Header[]{
new BasicHeader("Content-Type", "application/json")
};
builder.setDefaultHeaders(defaultHeaders);
//endregion
//RestClient restClient = builder.build();

//启用嗅探器
//SniffOnFailureListener sniffOnFailureListener = new SniffOnFailureListener();
//builder.setFailureListener(sniffOnFailureListener);
//sniffer = Sniffer.builder(restClient)
// .setSniffIntervalMillis(5000)
// .setSniffAfterFailureDelayMillis(10000)
// .build();
//sniffOnFailureListener.setSniffer(sniffer);
return builder;
}

public RestHighLevelClient getHighLevelClient() {
if (highClient == null) {
synchronized (ESClient.class) {
if (highClient == null) {
//gighClient是通过lowClient包装产生的
highClient = new RestHighLevelClient(builder);
//设置嗅探器
//十秒刷新并更新一次节点
sniffer = Sniffer.builder(highClient.getLowLevelClient())
.setSniffIntervalMillis(5000)
.setSniffAfterFailureDelayMillis(15000)
.build();
}
}
}
return highClient;
}
/**
*
* 关闭sniffer client
*/
public void closeClient() {
if (null != highClient) {
try {
sniffer.close(); //需要在highClient close之前操作
highClient.close();
} catch (IOException e) {
e.printStackTrace();
}
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
public void snifferTest() {
RestHighLevelClient client = ESClient.getInstance().getHighLevelClient();
Iterator<Node> nodes = client.getLowLevelClient().getNodes().iterator();
while (nodes.hasNext()) {
Node node = nodes.next();
System.out.println(node);
}
Thread.sleep(5000);
System.out.println("5秒后:");
nodes = client.getLowLevelClient().getNodes().iterator();
while (nodes.hasNext()) {
Node node = nodes.next();
System.out.println(node);
}
ESClient.getInstance().closeClient();
}

假设有5台机器,IP分别是【9200 - 9204】最后嗅探造成的输出结果是:

1
2
3
4
5
6
7
8
9
先输出:
host=[http://localhost:9200]
host=[http://localhost:9201]
间隔五秒后输出:
host=[http://localhost:9200]
host=[http://localhost:9201]
host=[http://localhost:9202]
host=[http://localhost:9203]
host=[http://localhost:9204]

嗅探器它能够给我们监控动态更新集群的节点数量,避免了程序因节点过多或增加/减少节点造成的切换问题。

最后更新: 2020年12月16日 10:32

原始链接: https://midkuro.gitee.io/2020/12/10/elasticearch-api/

× 请我吃糖~
打赏二维码